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Fuzzy control behaves more robustness than conventional control that has been proved by many researches.
A problem associated with the design of fuzzy control has been the size of the rule-base. As the number
of system variable increases, the number of rules in a conventional complete rule set increases exponentially
which will require the computer to process a huge data base, leading to memory overload and longer compu-
tational time. To make the problem manageable, cascade structure, in which the number of rules will increase
linearly instead of exponentially with the number of system variables is proposed. This makes it possible
to apply fuzzy rule based controllers to large scale system. On the other hand, cascade fuzzy controller is
also an effective method to achieve a good performance such as robutness for a fuzzy control system. In this
paper, the principle of cascade fuzzy controller is analyzed and its possibility and feasibility applying to large
scale system have been discussed. Simulation results show the advantages of using the cascade structure

fuzzy control to these models.
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1. Introduction

One of the main objectives in design of a controller
is a concord of the required high performance under
species operating conditions, such as stability and ro-
bustness. Fuzzy control is proved to be rather robust
to any changes in the environment, both for the plant
and the controller itself. This feature was considered
as one of the main advantages of the fuzzy control on
its development. It has been known that robustness
is the ability to preserve or to avoid significant decay
in the performance after some operating conditions has
changed. To achieve this goal two basic ways are widely
exploited:

e An adjustment of the fuzzy control parameters af-
ter their initial choice that 1s the adaptive and learning
fuzzy controllers.

e An application of special fuzzy control system struc-
tures, for example hierarchical or cascade control struc-
tures.

Although nearly all control researches treat many of
the above-mentioned control structures, the design pro-
cess 1s that a given controller corresponds to a given
system. Few or nothing is said about the question of
which method should be preferred under certain cir-
cumstances @ . Cascade fuzzy control being as one of
the important method remains lack a system analysis.

Another motivation to do this research is that in de-
sign fuzzy control a problem has been the size of the
rule-base. As the number of system variables increases,
the number of rules in a conventional complete rule set
increase exponentially. That will require the computer
to process a huge data base, leading to memory overload
and longer computational time. To make the problem
manageable, cascade structure, in which the number of
rules will increase linearly instead of exponentially with

BERX ox#FExx B, K 11 &

the number of system variables is proposed *® . Own-
ing to the cascade fuzzy controller, the number of rules
is greatly reduced and makes it possible to apply fuzzy
rule based controllers to large scale system.

Raju et al®proposed a multi-level, hierarchically
structured controller. This approach ranks the inputs
according to an order of influence on the process, which
is determined by the system designer. The two most
influential state inputs are evaluated in the first level;
then, in subsequent levels; the output of the preceding
level is evaluated with the next most influential state in-
put. This method was applied to control the feedwater
to a steam generator of a power plant. The simulation
results show that the hierarchical fuzzy controller yields
superior performance over the conventional PID con-
troller. To improve the robust performance Raju et al
also propose an adaptive hierarchical fuzzy control algo-
rithm whose advantages is also proved by M.W.Tsang
Y applying to a laboratory-scale process. A hierar-
chical multivariable fuzzy controller for learning with
genetic algorithms was proposed by D.A .Linkens 2 on
how to design the fuzzy rules. Although they all show
the advantage of cascade fuzzy control, the research is
specific, no one do the work under what circumstance
shows the cascade fuzzy controller should be preferred,
that 1s a cascade fuzzy controller should be applied to
what process and how to design it. In the paper the
cascade fuzzy control is firstly applied to SISO (simple-
input simple-output) system, then it is extended to
large-scale system such as SIMO (simple-input multiple-
output) and MIMO (multiple-input multiple-output)
system. The goal of this work is to supply the method
on how to design a cascade fuzzy controller on different
process and evaluate their advantages. The principle of
cascade fuzzy controller is analyzed. For a SISO process
the type of processes suitable for a the cascade fuzzy
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control structure and its construct way is discussed. As
one special application of cascade fuzzy control, it is ap-
plied to a ball-beam model that is a typical the SIMO
system in section 3. For MIMO system, cascade fuzzy
control is also an effective decomposition method.

2. The Principle of Cascade Fuzzy Controller

2.1 Fuzzy Controller Conceptually, fuzzy con-
troller is a rule-based expert system. Considering a
MISO system fuzzy set R, the if-then rule j is of the
form:

RU) . IF x1is Apy, 2908 Ao, - -2 15 Ap,
THEN yis B; - (1)

Where 7 = 1,2,---, N, and N is the number of fuzzy
rules, z;(i = 1,2,---,L) € RL are the input variables
of the fuzzy system, y € R is the output variable, A
and B are linguistic terms characterized by the fuzzy
membership functions pa, (#;) and pp(y), respectively.
Each fuzzy rule R; can be viewed a fuzzy implication
Agp, x---x Ay, . Practice has shown that human knowl-
edge in a variety of applications can be formulated in
the form(1).

On the other hand, fuzzy control is also a nonlinear
map which from the fuzzy sets of the input universe of
discourse U, to the fuzzy sets of the output universe of
discourse U,. In order to use these rules the first ques-
tion is interpret them to a nonlinear map . For the
fuzzy rule (1), a fuzzy implication can be interpreted as
Ap x -+ x Ay, — By in U, x Uy with the membership
function determined as

/’LAIl X xAr, =Bj (l‘, y) =
minfpa,, xxar, (%), 1B, (Y)]

or
NA11><~~~><AIL—>B]'($’3/) =
B x--xAr, (x) X ﬂBj(y) ........... (3)
where
L
BAp % xAr, (1‘) :H/’LAI,(xi) ............. (4)
i=1
or
/’LAIIX"'XAIL (1‘) :1é<nii<1<lL/'LAIz (xz) .......... (5)

Let fuzzy set A} in U, be the input to the fuzzy in-
ference engine and = = (zy,---,27)7, then each rule
of R; determine a fuzzy set B; based on the following
sup-min or sup-product compositional rule:

/’LBj(y) = sup min[/"iéxj(x)a/"Ajl><~~~><AIL—>Bj(xay)] (6)

relU,

or

p1B; (y) = sup [y, (#)pa, . xa;, —»8;(x,9)] (7)

relU,

Now the N fuzzy rules in the form of (1) determine a

mapping from a fuzzy set A%in RL to a collection of N
fuzzy sets Uyin R. The defuzzier performs a mapping
from fuzzy set to a crisp point y. This mapping is gen-
erally chosen as the center average defuzzier:

o = oi=t Y (m ()
L L (e ()

where y! is the center point in R at which ug,(y;)
achieves its maximum value in the ith fuzzy controller.

2.2 The Structure of Cascade Fuzzy Con-
troller From the above analysis, a MISO control
system is actually a nonlinear map which connects the
input and output. In many studies on fuzzy logic con-
trol, only single variable (SISO) control has been con-
sidered. In most of these cases the control algorithms
involve only two rule antecedents, a state and a change
of state, and one consequent a control variable. As a
result, the most common approach to multi-variable
fuzzy control i1s to extent the single-variable case by
combining more state-variable pairs. This referred to
as multiple inference fuzzy control. This approach re-
sult in high-dimensional rule-bases that may not be im-
plementable in practical systems. A fuzzy controller,
which has L input state variable, each of which can take
Ri(j =1,2,---,N) fuzzy rules, will comprise a total of
R' x R? x --- x RN rules. On the other hand, if the
state variables are fuzzy sets drawn from the same uni-
verse of discourse then the total number of rules is R .
It can be seen from the above that for each additional
state variable the number of rules increases exponen-
tially. Cascade fuzzy control is one of the effectiveness
method to handle this problem. By this cascade struc-
ture, the number of rules will increase linearly. A typ-
ical cascade fuzzy controller with m stages i1s shown as
figure 1, where zg, 1, -, z,, are the inputs of cascade
fuzzy controller, y1,y2, - -, Ym are the outputs for each
stage. Fuzzy controller in each stage 1s in two-input one-
output. The fuzzy rule in each stage can be expressed
as:

Stage 1:

IF zqis Ay and z1is Aj THEN yy is By

IF xois A} andxyis A7 THEN yyis B, - (9)
Stage i (¢ =2,3,---,m):

IF y;_yis A} andz;is Aj, THEN y; is By

IFy;_1is A} andx;is A7 THEN y;is B, (10)

Fig.1. The cascade fuzzy controller
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Cascade Fuzzy Control

Because there is no a general method to adjust the
parameters of a fuzzy controller, turning the cascade
fuzzy controller is more difficult lies in there are more
parameters should be turned. The design examples are
turned as follows *):

e The rule is initialized using knowledge on the sys-
tem;

e Input scaling factors are equivalent to normaliza-
tion gains. It i1s easy to know the maximal values of the
input variables by means of the reference model.

e Output scalings are initialized by the characteristics
of the process and the physical limitations.

e The membership functions are triangular and
regularly spaced onto a normalized universe of dis-
course. Then the membership function was turned by
SQP(Sequential Quadratic Programming) .

3. Plants Suitable for Cascade Fuzzy Control

3.1 SISO System For a SISO system if the in-
termediate signal is available, a cascade control system
can be constructed as figure 2. Cascade Fuzzy controller
1s composed two fuzzy controller controll and control2.
The feedback of controlled goal is on the outside loop
and the feedback of the other intermediate state of the
model is used as the inside loop. The plant is divided
into two parts P; and P,. The property of this cascade
fuzzy controller 1s the influence of disturbance d and
the dynamic of plant P; can be restrained by the inside
feedback before it affect on the outside feedback. So it
can achieve more precisely control goals with a reference
model expressing the desired dynamical performance.
For a SISO plant, two conditions are necessary to de-
sign a cascade fuzzy controller. One is the plant can be
divided P; and P» suitably and its intermediate signal
is available. The other is the inside feedback behave a
rapid response than the outside feedback.

A laboratory liquid level regulation system that simu-
lates plant widely involved with dairy chemical or heat-

ta.rget} controller

efoneg

Fig.2. The structure of cascade fuzzy controller

for SISO System

Input u(t) Disturbance d(t)

Tank 1 Tank 2

Fig.3. The structure of tank model
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Table 1. rule base of fuzzy controllerl

e | N|Z|P
ulN|Z|P

Table 2. rule base of fuzzy controller2

iNe | N | Z | P
N | NB | NS | ZO
Z | NS | zO | PS
P | zO | PS | PB

balancing process is used as the design example ®. It
i1s a coupled nonlinear system as figure 3 and described
by the state-space differential equation set:

AR

_Ciay _
|: Chay A Qg(giag hz) (11)
=L/ 2g(hy — ha) — =52+/2g(ha — ho)

Here, hi(t) and hy(t) are the liquid levels of tank1 and
tank2, respectively; u(t) is an input flow rate mapped
from a pump voltage; d(t) is also a pumped input but
1s used to test the rejection of disturbance when need;
C7 and C} are discharge constants; ay and as are orifice
areas; A 1s the cross-sectional area of both tanks; and
g is the gravitational constant. There are two practical
constants imposed on this system. One is by its physi-
cal structure, the minimum liquid level bounded by the

Fig.4. The control surface of two fuzzy controllers

Height of Tank2
e
.

—'cascade fuzzy controller

R S e
i

‘- --'PID controller

E) a0 T 1m0 1o te

timmem(s)

Fig.5. The response result of cascade fuzzy
controller



height of the orifices. The other is by the upper limit of
the pump capacity.

The parameters of tank system are following:
C1=C3=0.58; a;=0.976 cm?; a5=0.386 cm?; A=100 cm?;
g=981 cm~?; ho=3 cm; max(u)=33.3cm3s7L.

The objective of this control system is to drive,
through the input to tankl, the liquid level at tank2
towards the desired level of 10 cm as fast as possible
with minimal overshoot and steady-state error. Subse-
quently a step- down command of Hem 1s given at 800s.
A disturbance inflow of 8 cm3s~! is added at 400s and
800s respectively.

Based on its the property, this model can be divided
two parts tankl and tank2 and the liquid level of tankl
is being as the intermediate feedback. Fuzzy controllerl
is a one-input one-output controller composed by 3
rules. Fuzzy controller2 is two-input one-output with
9 rules. The rule base 1s in table 1 and table 2 respec-
tively. This cascade controller only uses 12 rules. After
turning, the control surfaces of the two controllers are
as figure 4. The simulation result is as figure 5. Com-
pared PID controller, the cascade fuzzy control behaves
high performance, especially robustness.

3.2 SIMO system The SIMO system is thought
as one type of special plant lies in that these plants are
an uncontrollable problem in control theory which the
controllability matrix does not exist due to the num-
ber of variables to control i1s greater than the number
of the controlling input. There is this kind of models
such as a nonlinear cart-ball balancing (CBB) system

® the translational oscillations with a rotational ac-
tuator (TORA) system ® and the ball-and-beam (BB)
dynamical model system (7. A fuzzy control system can
successfully control this classically uncontrollable sys-
tem has been reported ® (3

It has been proven ¥ (®conventional fuzzy con-
trollers is one type of PID controller. The vast ma-
jority of fuzzy controllers are limited to systems with
predominantly second-order dynamics. For higher or-
der system, the system may not be stabilized by a con-
ventional fuzzy controller.

In the design of a fuzzy logic controller for this kind

Xref

Fig. 6.

- —| conli —|con2 |—»
| X- o _ :
o4 -“1______

Fig. 7.
system

Ball and beam system.

The cascade fuzzy controller for ball-beam

system, 1t is important to identify appropriate decision
variables that constitute to an effective control action.
This kind of systems also has the same property that
they two or more controlled objects, but there is only
one nonzero object. The multi-output whose object val-
ues are zeros can also be regarded as the intermediate
state of plants. That is why the cascade fuzzy control
is an effective method to handle this problem:.

In our primitive work @ this cascade fuzzy controller
has been applied to a ROTA system and it had been
proven that it has better performance than a conven-
tional cascade controller. A systematic design method
for the cascade fuzzy control design is also given in that
paper. In this paper, as an example of control design,
the cascade fuzzy control is applied to the ball-and-
beam. Tts schematic is as figure 6 (®.

The dynamics of this system are:

1.4% = 20% — gsin 0
(¥ + mz)g = —2mxzil — mgrcosf + U - (12)

Where the parameters of the beam being: the rota-
tional inertia of the beam ¥=0.0079 kg m?, the acceler-
ation due to gravity is ¢=9.8 m/s?, the mass of the ball
assumed to be a solid sphere m=0.01679kg. Further,
due to physical constraints the states are limited as fol-

The control surface of two fuzzy controllers

Fig. 8.

2

the ball position{m)
i
i
|
|

I [ "the target

o/ - - the position respanss

’tirrfe(s)
Fig.9. The ball-beam control response.
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lows: due to the beam being 1m, || < 0.5m, and due
to the mounting of the beam, |@] < 0.5rads.

The cascade fuzzy controller is composed two fuzzy
controllers as figure 7. Each of the fuzzy controllers is
composed of two-input two-output which has the same
rule base as table2. The cascade fuzzy controller only
uses 18 rules. After turning, the fuzzy control surface
as figure 8. The objective is to force the ball’s actual
position to correspond to the desired position. When
the target position is given as —0.5m to 0.5m at 0 s
and 0.5m to Om at 6 s, the control result is as figure 9.

3.3 MIMO system In a large scale system,
there is such a high interaction between the controlled
variables that a multi-input multi-output control struc-
ture 1s needed. A typical multivariable fuzzy control
system with L inputs and M outputs can be described
as:

RU) . IFx(lj) isAIl,x(Zj) 15 A, -+ ~J:(Lj) is Ag,
THEN y is By, ¢ is Bra, - -y is By,

Where 5 = 1,2,--- N is the number of fuzzy rules.
If the outputs ygj),yg]), cee y%) are independent vari-
ables, the MIMO controller can be separated in a set
of MISO system as (1) which could lead to the imple-
mentation of a controller. Unfortunately, in most real
case the assumption of independent output variable is
not impossible.

Much fuzzy decomposition methods have been pro-
posed which is divided to passive decomposition, ac-
tive decomposition and direct decomposition *®. The
passive decomposition method is composed of cascade
fuzzy controllers. When the system has a two-input
two-output structure, the controller can be constructed
by two sets of cascade fuzzy controller as figure 10.
It has being proved that this controller is functionally
equivalent to a multiple input fuzzy controller ¢ 7

T T |
Ei_L, > | Uy
AE1 o Stagell . | Stagel2|+—»

[ i el
gy | — [ —= 1

2|y L »] U
AE2 | Stagel2 > StageZZ_:_2>

Fig.10. An example of MIMO cascade fuzzy
controller.

& C Q2C2

1k

QsC

- _

Fig.11. Scheme of the mixing tank.

BERX ox#FExx B, K 11 &

Validation of the MIMO cascade fuzzy controller
method has been done on an academic example: a two-
input two-output mixing tank *®. The process consists
of mixing streams of two flow liquids in a continuously
stirred tank. A schematic of the system is given in figure
11.

The control inputs are the two flow rates ()1 and @-.
C1 and (5 are respectively the concentrations of two
inputs. The output liquid has a flow rate J; and a con-
centrations C'. The regulated outputs are the tank level
H, and the tank concentration C. The non-linear model
of the process is:

di Q1 @ 1

w5 tsosvH
dC' 1
= (de-0+Ze-a) w

Where C1=1mole/l and Co=2mole/l, S = 1 m? is the
section of the tank. Based on figure 10, two control
input are F1=H and F>=(. U;=0@; and Uy;=Q, are
two control outputs, each of four fuzzy controllers use
the same fuzzy rule base as table2. The fuzzy control
surface of stagell and stagel2 are in figure 12.

When the first operating point is in Hp=1m,
Co=1.25mole/l, Q10=151/s and Q20 =51/s, two pro-
cess are carried to evaluate the control performance.
First, regulate the tank level point. Keep the tank
concentraction in Cy=1.25 mole/l, change the tank level
from Ho=1m to H=1.1m, the control result is in fig-
ure 13. Then regulate the tank concentration level
point. Keep the tank height, the constrastion is from
Cy=1.25mole/l to C'=1.26 mole/l, the control result is
in figure 14. The fuzzy control results in same situation
are also shown in the same figure.

4. Conclusion

In the paper, the principal of cascade fuzzy control
is analyzed and its possibility and feasibility to SISO,

de/dt2 el

Fig.12. The control surface of stagell and
stagel2.
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SIMO and MIMO system are discussed. Simulatiom ex-
hibit when a cascade fuzzy control is applied to a SISO
process, it can improve the control performance espe-
cially the robustness. It also has been proven that it 1s
the most suitable method for a SIMO system. The com-
position of cascade fuzzy control is also a useful method
to handle the MIMO system. These results show the
cascade fuzzy control is a good method to get a robut-
ness for a large scale system.
(Manuscript received February 4, 1999)
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