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Abstract—Aerial hovering vehicles, like helicopters, has the
ability of remaining stationary while on air, which is useful for
maintaining its position at a certain location for a period of time.
Operating a rapid hovering maneuvers while avoiding obstacles
is difficult and mostly depends on the skills of an expert operator.
In this research, we develop a control system that learns to form a
control knowledge that can perform rapid position control while
considering obstacles. The system works by manipulating angular
orientation of the vehicles for performing a rapid movement,
while considering existing obstacles in an operation environment.
The effectiveness of the system was evaluated and proven in series
of simulations.

I. I NTRODUCTION

Aerial hovering vehicles, such as helicopters, has been
useful in various applications. One of the useful application
of such vehicles is in operations that needs the vehicle to
remain stationary on air, hovering and maintaining its position
at a certain location over a period of time. UAV that has
such characteristic has been beneficial in many operation,
particularly in case of observation, due to its smaller size.

Operating rapid position control with hovering maneuvers
around obstacles is difficult without certain interruption when
making control decision. The effectiveness of such control
decisions are mostly depending on the skill of an expert
operator. An expert operator develops his own control knowl-
edge from training and experience to operate such maneuvers
around existing obstacles [1]. If such control knowledge can
be learned by a control system autonomously, dependency on a
skilled human operators can be reduce, while having possible
application on developing an autonomous UAV.

Previously, we have developed a learning-based control
system that can perform rapid position control by manipu-
lating a hovering UAV’s angular orientation while hovering
at a certain altitude, and applied on an inverted pendulum
system [2]. In this research, we develop a learning-based
control system that learns the necessary control knowledge
for aerial hovering vehicles, that can learn to operate the rapid
position control, around obstacles, towards an assigned target
position. Reinforcement Learning is applied to create control
knowledges for manipulating angular orientation in order to
perform a rapid position control around obstacles towards a
target position. Simulations were constructed to confirm the
effectiveness of the system.
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Fig. 1. The structure of the system.

In the next chapter, we discuss the structure of the control
system, including the dynamics of aerial hovering vehicles
that for performing rapid position control and the learning
process that make the vehicle able to consider any obstacle
while performing a rapid position control. Later, the structure
of simulations done to confirm the effectiveness of the system,
and finally, the results of the simulations.

II. T HE STRUCTURE OF THECONTROL SYSTEM

Position control for aerial hovering vehicles requires the
operator to configure the angular orientation of the vehicle to
stabilize while performing transition between two positions.
An expert operator are capable of analyzing and react to
a situation in case of any obstacles appear in the vehicle
control path. The operator decides the manipulation techniques
for the angular orientation of the vehicle, to reconfigure its
operation path around the obstacles safely with optimum
results. Operating the vehicle angular orientation is difficult
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Fig. 2. The angular dynamics of a hovering UAV (ArDrone by Parrot)

due to constraints in selecting the best angular orientation since
it is also required to stabilized the vehicles on air. Therefore,
an adequate control knowledge are needed for performing
an optimum angular transition that is required for position
transition.

The structure of the system developed in this research is
shown in Fig. 1. This system consisted two main part; the
Control Part and the Learning Part. The Control Part controls
the controlled aerial hovering vehicle for performing rapid
position control using three angular parameters; roll, pitch
and yaw. The Learning Part rewrites the control knowledge
depending on the successful and failed control attempts in par-
ticular operation environment, therefore a successful operation
can be found and maintained in a specific environment.

In this research, we applied the ability to learn the knowl-
edge of the expert operator into a control system based on a
hovering UAV shown in Fig. 2. This hovering UAV consisted
three parameters of angular orientation in three dimensions;
roll, pitch and yaw. These three angular parameters is ma-
nipulated in our system for operating position control while
considering any existing obstacles.

A. Rapid Position Control of Aerial Hovering Vehicles

The control part obtained a target state best on task in-
structed by a human operator. This part then selects the best
combination of angular orientation that can perform a position
control. In our previous research [2], We understood that it
was possible to manipulate angular orientation to perform
a rapid position control. This is because, manipulating the
angular orientation changes the direction of the thrust. In
order to maintain the altitude, the force of the thrust will be
increased and that creates a horizontal force as shown in Fig.
3. This effect produces acceleration for performing horizontal
movements.

Target angleθT is used for changing the direction of the
thrust to create a horizontal force for horizontal movement
while hovering at a constant altitude. Fig. 3 shows the direction
of the thrust according to target angleθT that makes the
horizontal movement possible. Fig. 4 shows by manipulating
target angle at a constant altitude, acceleration and deceleration
can be produced for position control. Therefore, optimum

Fig. 3. The trajectory of a hovering UAV when manipulating target angle
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Fig. 4. The maneuver for position control through target angle.

combination of target angles are needed for performing a
precise and optimum rapid position control.

Here, three angular parameters are needed to be manipulated
for an effective rapid position control around an existing
obstacles. This function is done by the learning part, that
learns the optimum maneuver around the obstacles by stores
the knowledge for manipulating these angular parameters.

B. Learning Rapid Position Control with Obstacle Consider-
ation

The Learning Part rewrites the control knowledge depending
on successful and failure attempts in a control operation.
In an unknown environment, it is difficult to perform a
successful and optimum control operation due to availability of
obstacles and other constraints. Here, Reinforcement Learning
is applied to rewrite the control knowledge by determining
the favorable states; location and velocity, for an actiona,
which is the optimum target angular orientationθT for rapid
position control. The control knowledge,Q is rewritten using
Q-learning as(1) and (2), which is

Q(s, θT ) = (1− α)Q(s, θT ) + α[rew + γQmax], (1)



Qmax = max
θ′
T

Q(s′, θ′T ) (2)

Wheres ands′ denotes state and future state,α is Learning
Rate,γ is the discount rate andr is the reward.

However, as shown in Fig. 2, the hovering UAV does have
three parameters of angular orientation, therefore, 3 optimum
target angle must be learned in order to perform a rapid
position control. Plus, effective combination of three target
angles may help perform an optimum rapid position control
around obstacles. Therefore, target angleθT is a set of three
target angles from the three parameters of angular orientation,
as

ΘT = {θroll, θpitch, θyaw}.

From above, a set of 3 independent control knowledgeQ
is created for each target angle, as

Q = {Qroll, Qpitch, Qyaw}.

Since there will be three sets of independent control knowl-
edge will be used in the system based on three dimensional
angular orientation, states were prepared to be three dimen-
sional coordinates and velocities. States consisted locationr,
where

r = {x, y, z},

and velocity according to each axis,v, where

v = {vx, vy, vz}.

Therefore, states is denoted as

s = {r,v}.

The rewardrew used to update the control knowledgeQ
is based on(3),

rew =
ds − ds′ + 1

ds′
(3)

Whereds is the distance between the control object at state
s and the target location, andds′ is the distance between the
control object at states′ and the target location, as shown in
Fig. 5.

Rewardr in (3) is used for two reasons; To have the control
object travel a large distance between two states, and To have
the control object distinguish the favorability of states that are
closer to target position. This is because, larger travel distance
between two states represent higher acceleration that is needed
for performing rapid position control to reach the target state
at a faster rate.

Beside(3), rewardrew is a constant when the system failed
to reach the target state within the designated simulation time,
and when the control object exceed the designated movement
range for the simulation. The details of the simulation is
explained in the next chapter.
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Fig. 5. Parameters for determining rewards.

III. STRUCTURE OFSIMULATION

In this research, the simulation was done in MATLAB
Simulink based on the parameters of the hovering UAV shown
in Fig.2. These parameters is shown in Table I. A series
of simulations which consisted different target position was
created to confirm the effectiveness of the system. Obstacles
was also included in the simulation to confirm that the system
is able to operate through obstacles as intended. The target
states and obstacles were placed as shown in Fig. 6.
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Fig. 6. Obstacles and target location assigned in simulations.

The parameters for Q-learning is as shown in Table II. These
parameters was selected pre-simulation. The position control
only applied on horizontal movements with constant altitude,
within a movement range assigned.

There are several properties designated into the simulations
before the simulation was conducted. For each simulations
with different target state, the properties is as follows.



TABLE I
SPECIFICATIONS OF THE SIMULATED AERIAL HOVERING VEHICLE

Parameters Value

Weight 0.42 [kg]
Size:

Length 0.53 [m]
Width 0.52 [m]
Height 0.1 [m]

TABLE II
Q-LEARNING PARAMETERS

Parameters Range Intervals

State Location,r[m] −10 < r(x, y) < 10 2
r(z) = 1

Velocity, v [m/s] −10 < v < 10 2
Action Target Angle,

θT [rad]
−0.25 < θT < 0.25 0.05

Learning rate,α 0.5 Discount rate,γ 0.3

• Simulation runs six times with different target state
assigned with each having 4 four permanent cylindrical
obstacles with diameter of 1[m].

• Simulation end at 3000 episodes of trials.
• 30 second operation time for each episode.
• Action is evaluated for reward and target angles were

renewed every 1 second.
• ε−greedy selection of each target angles
• rew = −2 when the action leads to out of range or

obstacles.
• Due to large intervals on states, the controller for states

within 1[m] around the target state will be switched to
PD control.

The results from the simulations is determine by the accu-
mulated rewards through the simulations and the successful
attempts on reaching the target position by operating with and
without obstacles. The results continues in the next chapter.

IV. RESULTS OFTHE SIMULATION AND DISCUSSION

At the end of the simulation, the result of the trials for each
episode was collected and analyze to confirm the reliability
of the system. The results should provided the information on
the control path for each target state assigned. This includes
position transition and angular transition which is important
for distinguish the reliability of the system, with or without
obstacles in its operation’s environment. The results also
provide information regarding the improvement that happens
in the control knowledge. This can be understood by view-
ing the accumulated rewards in the simulations, since more
rewards accumulated leads to more successful operation were
attempted through the simulation.

Therefore, The results of the simulation is viewed in two
aspects. The first aspect is the characteristic of rapid position
control operation that successfully operates within an environ-
ment. The results from the first aspect also compares an oper-
ation without obstacles with an operation with obstacles. The
second aspect is the improvement of control knowledge that is
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Fig. 7. Successful control operation for the simulation with assigned target
state.

used to perform the rapid position control. The accumulated
reward from the trials throughout the simulation is monitored
to confirm the effectiveness of the learning process.

A. Successful Control Operations towards designated target
states

This results confirms the reliability of the system for
performing successful control operation that is required to
reach the assigned target state. There are 6 target states
were assigned with the same initial starting position. Control
attempts for each target states that was learned by the system
during the simulation is shown in Fig. 7.

Fig. 7 shows the control operation that was accomplished at
the final, 3000th episode of the simulation for each target angle
assigned. During this episode, the most successful control
maneuvers in an environment for a target state should have
been learn through trial and error in the previous episode.

The results shows that the control system was able to
control the control object towards each designated target states.
Simulation for target 1 to 2 shows that direct movement from
start position was able to achieved, when the movement path
is not obstructed by any obstacles.

However, for target 3 and 4, the movement path was not
so smooth compared to target 1 and 2. This is because, the
system learns the most effective maneuvers, and in case for
target 3 and 4, the optimum maneuvers that was learned here
were not as smooth as for target 1 and 2, in Fig. 7.

For target 5 and 6, the control system bent the movement
path so that the control object can avoid the obstacles, but still
reaches the assigned target state.

1) Successful Control Operation without obstacles in direct
path.: This results explains the movement path of the control
object that was operated by the system towards reaching target
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Fig. 8. Position transition during successful control operation without
obstacles in direct path (Target State 1)
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Fig. 9. Angles transition during successful control operation without
obstacles in direct path (Target State 1)

state 1. The direct path towards target state 1 is unblocked by
any obstacles but the system are needed to be careful of the
obstacles at the side of the direct path. The details of the
control operation for reaching target state 1 is shown in Fig.
8 and Fig.9.

Fig.8 shows the position transition of the control object
in each 3 axis, during the final episode of simulation for
Target State 1. Here, the system selects the optimum position
transition for achieving the target state, with less unnecessary
movements according to each axis.

Fig.9 shows the transition of angular orientation based on
roll, pitch and yaw during the final episode of simulation for
Target State 1. Here, the manipulation of angle can be seen to
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Fig. 10. Position transition during successful control operation with obstacles
in direct path (Target State 6)
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Fig. 11. Angles transition during successful control operation with obstacles
in direct path (Target State 6)

influence the position transition in Fig.8.
It is understood from Fig.7 that the same effect are also

happening in simulation with target state 2, 3 and 4, since
there are no obstacle obstructing the direct path towards the
target state. Therefore, it is understood from the simulation that
the most optimum combination of target angles was selected
to construct the most optimum position maneuvers needed to
achieve the target state.

2) Successful Control Operation with obstacles in direct
path.: This results explains the movement path of the control
object that was operated by the system towards reaching target
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Fig. 12. Accumulation of reward during simulation.

state 6. The direct path towards target state 6 is blocked by an
obstacle and the system are needed to consider this obstacle
when performing control operation to reach target state 6. The
details of the control operation for reaching target state 1 is
shown in Fig. 10 and Fig.11.

Fig.10 shows the position transition of the control object in
each 3 axis, during the final episode of simulation for Target
State 6. Here, the system selects the optimum position transi-
tion for achieving the target state, with necessary movements
according to each axis, needed to avoid the obstacles place in
the environment.

Fig.11 shows the transition of angular orientation based on
roll, pitch and yaw during the final episode of simulation for
Target State 6. Here, the manipulation of angle can be seen to
influence the position transition in Fig.10 for taking necessary
movements to avoid the assigned obstacle.

It is understood from Fig.7 that the same effect are also
happening in simulation with target state 5, since there are
obstacle obstructing the direct path towards the target state.
Comparing the successful control operation without obstacles,
target angles assigned in the control operation with obstacles
are more frequent. This is because, the angular orientation
applied are necessary to help the control object avoid the
obstacles that exist in the direct path towards the target
state. Therefore, it is understood from the simulation that the
most optimum combination of target angles was selected to
construct the most optimum position maneuvers needed to
achieve the target state while considering existing obstacles
in the environment.

B. Control Knowledge Improvements during Control Opera-
tions towards Designated Target States

This result explains the improvement that occurred during
the simulation. For each episode, knowledge has been updated
to satisfy the environment where the control operation will be
performed. Therefore, we can understand that the increasing

number of accumulated rewards represent the more successful
a control operation was. This explains that the system learned
the best control operation needed by attempting the operation
that leads to most reward in each episode. The results of the
accumulated reward is shown in Fig.12

Fig.12 shows the accumulated reward during the simulation,
according to the assigned target state. Here, we understood
that the amount of accumulated reward increases with more
episodes of trials. The amount of accumulated rewards was
low at the starting episode, but increases towards the end.
Therefore, it is proven that the successful control attempts
were learned during the simulation that leads to more reward
accumulated through more episodes.

V. CONCLUSION

In this research, we develop a learning-based control system
that can perform rapid position control by manipulating a hov-
ering UAV’s angular orientation while considering obstacles.
Three independent control knowledge for three parameters
of angular dynamics were constructed and updated during
operation in order to obtain an optimum knowledge depending
on environment situation.

Simulations that involved control operations in an envi-
ronment with different target state assigned were created in
order to confirm the effectiveness of the system. Obstacles
was placed in the environment that make some target states
are easy to achieve and some require the system to make
some consideration on the operation maneuver for avoiding
the designated obstacles.

Results shows that all the target states were achieved and
operation maneuvers were successful in avoiding the obstacles.
The results also shows that the time taken to achieved the
target states were not influenced much by the obstacles, and
around the same as the time taken to achieved the target states
without any obstruction. Therefore, the learning control system
for rapid position control with obstacle consideration for aerial
hovering vehicles was achieved.
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