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Abstract— The real time flexible operation of a car-like
mobile robot with nonholonomic constraints in dynamic envi-
ronment is still a very challenging problem. The difficulty lies in
the setting of moving sub-target in real-time and appropriately
to obtain a collision-free and low cost path. In this paper,
we present a new approach to obstacle avoidance for mobile
robots in a narrow area with static and dynamic obstacles. It is
based on selection of the sub-target points of robot’s movement
called “soft target” which is a target set defined as all possible
and reachable via-points in a navigation space. The soft target
is acquired by on-line learning based on the final target and
environment information. Each element of it has its membership
value between 0 to 1 denoting its evaluation. The algorithm
of the presented method is realized by fuzzy predictive control
(FPC). The simulation results show the validity and effectiveness
of the proposed robot motion control method.

I. INTRODUCTION

The motion control problem for mobile robots can be
typically formulated as planning a path between two spec-
ified locations, which is collision-free and satisfies certain
optimization criteria.

It have been extensively researched and many methods
for obstacle avoidance have been proposed, such as potential
force field method[1], behavior-based navigation[2], fuzzy
decision making theory[3], and so on, and significant results
have been obtained in the past decades[4,5,6]. However,
many of the existing methods are inflexibility in responding
to changes in the environment and poor to respond to
uncertainties, or rely on some knowledge of the global
environment. Most of them suppose that the map is wide
enough and the robot can reach its target without any three-
point turns but just by U-Turns (Figure 1) which require
wide streets or cars that can turn in a very small area, or the
control target is just the location ex the orientation. In fact, in
a narrow area, it is possible that the robot can not reach the
target if without three-point turns because of the constraint
of minimal turning radius or the disturbances of obstacles.
The car parking problem in a static environment has been
studied by Prof. Yasunobu. A fuzzy target based controller
have been proposed[7], and it solved the parking problem
in a fixed space without moving obstacles. But because the
target is acquired off-line for a parking lot, when the final
target or map changed, target had to been explored once
more. It is difficult to respond to the dynamic environment
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such as moving obstacle, arbitrary placement of obstacles or
discretional initial position of the car.

Human’s action decision (Figure 2) is based on wide
targets and can respond flexibly under different situations just
based on information which are intrinsically vague, imprecise
and fuzzy[8]. They control a system according to its internal
characteristics and the external environment synchronously,
their decisions are based on a series of candidate targets
and the best alternative is selected in real-time based on
experiences by predicting and evaluating the state of the
object with taking dynamic restrictions into account. The
wide targets can be regarded as a “soft target” set and the
best alternative is adjusted dynamically with the changing of
environment.

Is it possible for an autonomous moving body to act based
on wide targets like human in a dynamic environment and
to realize a flexible operation? The answer is affirmative.
So, the problem that mobile robot responds to a dynamic
environment flexibly like human is considered in this paper.
We proposed a soft target based intelligent PFC controller
to realize a flexible autonomous operation for a car-like
mobile robot with nonholonimic constraints in a dynamic
environment.

(a) U-turns (b) Three-point turns

Fig. 1. Image of U-turns and three-point turns
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II. SOFT TARGET CONTROL METHOD

A. Soft Target

In this paper, soft target is defined as a target set and is
converted into target setting knowledge by soft computing.
It is constructed by fuzzy logic based on the final target and
constraint information, and can be expressed as a control tar-
get set defined by fuzzy set, which includes many alternative
candidates. Each candidate has its membership value defined
as satisfaction grade in the range from zero to one [9].

It is denoted as Figure 3(a), and can be expressed by the
membership function of enumeration type.

The total set of the target is assumed as R. Soft target
T̃n assumed to be a control target can be defined by the
following expression in state cn of the object.

T̃n =
∫

R

µ
T̃n

(ri)/ri, ri ∈ R. (1)

Here, T̃n is the soft target set and µ
T̃n

(ri) is the membership
value of alternative ri corresponding with the state cn.

As shown in Figure 3(b), target setting knowledge can
be expressed as set clusters which correspond with different
state. According to different current state cn(a ∼ f), the
soft target candidate set is T̃n(a ∼ f) respectively. Once the
target is set, it is possible for the system to select the best
alternative candidate instruction corresponding with one of
the substitutable target element ri by predictive fuzzy control
method [10].

By using soft target, it is possible to construct an intel-
ligent controller for a system with dynamic or uncertain
environment to realize the real time flexible operation of an
autonomous mobile body.

B. Intelligent control system design based on soft target

The configuration of system based on soft target can be
outlined as shown in Figure 4. It is composed of three
parts: state detecting part, soft target setting part and decision
making part.

1) Detector Part: This part is detecting the state variables
and the obstacles information, judging the attainment degree
to the final target and the contact degree to the obstacles.
When the constraints make it difficult to reach the final target
directly, the target setting instruction is outputted to the soft
target setting part.
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Fig. 3. Definition of soft target
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Fig. 4. Outline of the proposed system based on soft target

2) Soft Target Setting Part: When target setting instruction
is received, the soft target setting part sets new target based
on the soft target set according to the current state from the
acquired target setting knowledge based on the final target
and constraint information in advance.

3) Control Decision Part: In this part, the control decision
is made as following process. Firstly, each element of soft
target is assumed as the control target, and the operation
instruction candidate to each target is calculated. Next, the
future state of controlled object is predicted by using all the
operation instruction candidates in parallel. Then the future
state is evaluated by fuzzy inference, and the evaluation
value of the operation instruction candidate is calculated.
Lastly, the operation instruction candidate with the highest
evaluation value is selected and given to the object as a
control instruction.

These operations are repeated in the whole control process.
Thus, the intelligent control system based on soft target is
realized.

III. APPLICATION TO CAR-LIKE ROBOT

IN DYNAMIC ENVIRONMENT

A. Characteristics of Four-wheeled Mobile Robot

In this research, the robot is defined as a four-wheeled ve-
hicle with Ackerman Steering (Figure 5). The configuration
of it can be denoted by q = [x, y, θ, φ]T ∈ R

4. Where, (x, y)
is the Cartesian location of the center of its rear wheels, θ is
the heading angle between the body axis and the horizontal
axis, φL and φR are relative steering angle of left and right
wheel respectively, and φ = (φL + φR)/2 represents the
steering angle with respect to the car body (|φ| ≤ φmax). L is
the wheelbase (longitudinal wheel separation). b is the width
of car (lateral wheel separation). R is turning radius which is
the distance between instantaneous center of curvature (ICC)
to centerline of the vehicle. This system has 2 degrees of
nonholonomy since the constraints on the system arise by
allowing the wheels to roll and spin, but not slip. Thus, the
Pfaffian constraints on the mobile robot become:
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sin(θ + φ)ẋ − cos(θ + φ)ẏ − L cos φ · θ̇ = 0
sin θ · ẋ − cos θ · ẏ = 0 (2)

Choosing u1 = v cos φ and u2 = φ̇ as inputs yields:

q̇ =




ẋ
ẏ

θ̇

φ̇


 =




cos θ
sin θ
tan φ

L
0


 u1 +




0
0
0
1


 u2 (3)

Where, v is the driving speed, u1 corresponds to the trans-
lational velocity of the rear wheels and u2 corresponds to
the angular velocity of the steering wheels. Obviously, (3)
is a so-called driftless nonlinear system with 2 inputs (v, φ)
and 3 outputs (x, y, θ) constrained by Rmin = L/ tan φmax.
Where, Rmin is the minimal turn radius, φmax is the
maximal steering angle.

B. Problem Description

We considered a mobile robot about the same size as a
actual car moving in a 30m × 15m map with static and
dynamic obstacles as denoted in Figure 6. The final target
is able to be set as we want. The static obstacles can be
placed at any position with arbitrary shape, and the robot can
start at arbitrary initial position and orientation. In order to
achieve a collision-free and low cost motion, the moving path
from initial position to final target had to be planned online.
Because of the nonholonomic characteristic and the impact
of obstacles, it is necessary to find appropriate sub-targets
corresponding to each current state and map information until
arrive at the final target.

C. Soft Target Setting Knowledge

In order to acquire the target setting knowledge for the
current state, the 30m×15m space is described by occupancy
grid maps with 2m interval as showed in Figure 7 in which
each small circle denotes a target location (x, y) of robot (to-
tal 128 points). And the orientation θ is divided into eight az-
imuths (0, 0.25π, 0.5π, 0.75π, π, 1.25π, 1.5π, 1.75π). Thus,
the space results 128×8 = 1024 target candidates. For arbi-
trary state, we can approximate it to the nearest grid location
and orientation. So it is possible to obtain all possible targets
corresponding to the current state and obstacles information
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Fig. 9. Membership functions of cascade fuzzy controller

to form a state-action table with its action evaluation value
named membership value in this study. This state-action table
is defined as the soft target setting knowledge for the robot
car. It is learned based on the final target, current state and
obstacle information in real-time. The learning process is to
find all possible sub-targets that can reach the final target
directly.

In order to obtain the evaluation value of each target, we
suppose the vehicle moving from an arbitrary position ri =
(xi, yi, θi) in the map to achieve the final target rFinal =
(xfinal, yfinal, θfinal) controlled by cascade fuzzy control
method as showed in Figure 8. In which, the current target
orientation θT is fuzzy inferred from deflection eX of current
position Xt and target XT , then, operation steering angle φ
is fuzzy inferred from error eθ of the target direction θT and
the current body direction θt. The membership functions used
for evaluating eX and eθ are denoted in Figure 9. And the
1st stage and 2nd stage fuzzy inference models are denoted



TABLE I

1st STAGE FUZZY INFERENCE MODEL

θT (rad) eX(m)
NB NS ZO PS PB

NB -2.5916 -2.4738 -2.356 -2.2382 -2.1204
NS -1.413 -1.2958 -1.178 -1.0602 -0.9424

∆eX ZO -0.2356 -0.1178 0.0 0.1178 0.2356
PS 0.9424 1.0602 1.178 1.2958 1.4136
PB 2.1204 2.2382 2.356 2.4738 2.5916

TABLE II

2st STAGE FUZZY INFERENCE MODEL

φ(rad) eθ(rad)
NB NS ZO PS PB

NB 7.0 4.5 2.0 -0.5 -3.0
NS 6.0 3.5 1.0 -1.5 -4.0

∆eθ ZO 5.0 2.5 0.0 -2.5 -5.0
PS 4.0 1.5 -1.0 -3.5 -6.0
PB 3.0 0.5 -2.0 -4.5 -7.0

TABLE III

SOFT TARGET FOR FINAL TARGET(−6m, 6m, 1.0π)

Number Sub-target position Membersip value µ
1 (0m, 2m, 0.5π) 0.774
2 (0m, 4m, 0.75π) 0.026
3 (0m, 4m, 1.0π) 0.009
...

...
...

65 (4m, 14m, -0.25π) 0.622
66 (-6m, 6m, 1.0π) 0.999
67 (6m, 0m, 0.0π) 0.395
...

...
...

351 (20m, 10m, 1.0π) 0.624
352 (20m, 12m, 1.0π) 0.568
353 (20m, 14m, 1.0π) 0.512

by Table I and Table II respectively.
The evaluation value µ

T̃n
(ri) is calculated according to

the following cost functions.

µ
T̃n

(ri) = µtime(ri) ∧ µope(ri) ∧ µerr(ri)

µtime(ri) = (tmax − t)/tmax ∈ [0, 1]

µope(ri) = 1.0 − α

time∑
t=0

|ope(t)| ∈ [0, 1]

µerr(ri) = µdx(x) ∧ µdy(y) ∧ µdθ(θ) ∈ [0, 1] (4)

Where, µtime(ri) is evaluation of limit time, µope(ri) is eval-
uation of steering amount, µerr(ri) is evaluation of arrival
grade to final target. tmax is the maximal limit time for a
moving learning, t is the consumption time till arriving at the
final target,

∑time
t=0 |ope(t)| is the total steering amount, α is

coefficient of it. µdx(x), µdy(y), µdθ(θ) are error evaluations
of current position (x, y, θ) to final target respectively whose
error evaluation membership functions are shown in Figure
10 The less the consumption time or total steering amount
or error evaluations to final target, the higher the evaluation
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Fig. 10. Error evaluation membership functions

Fig. 11. Image of soft target for final target(−6m, 6m, 1.0π) with µ ≥ 0.1

value of the alternative target. For those that are unable to
reach the final target, the membership values are set as 0. For
the first time, the soft target is learned in this map without
considering any obstacle. Afer then, it is learned near the
current position (it is set in the range of 8m from current
position) to reduce the computation expense. If there is no
available target for the current state, system selects the one
learned at the first time as the soft target set.

Based on the cost evaluation function (4), we can obtain
each available sub-target and its membership value which
presents its satisfactory degree. Table III lists the acquired
soft target set for final target (−6m, 6m,π) without consider-
ing any obstacle. There are 353 possible candidates in which
(−6m, 6m,π) has the highest evaluation value 0.999. Figure
11 denotes 209 candidates which have the membership value
above 0.1. Here, the black cords denote the targets with the
membership value above 0.7, the blue means the membership
value is above 0.5, the green means the membership value
is above 0.3, and the magenta means the membership value
is above 0.1.

D. Soft Target Based PFC Intelligent Controller

The constructed system based on soft target and predictive
fuzzy control is denoted as Figure 12.

Firstly, the current robot’s pose and obstacles information
are detected by the state detector part. By judging the
attainment degree to the final target and the contact degree
to the obstacles, it decides whether giving target setting
instruction or not. If it is necessary to reset target, soft target
for the current state and environment is learned to obtain all
possible candidates.

Then, for each candidate ri in T̃n, the control instruction
Cri

is calculated by the cascade fuzzy control mechanism
described in the foregoing paragraph. And the future pose



Control 
Instruction
Candidates

Evaluate 
Predicted State Grade of 

Candidates

S
el

ec
t

T
he

 B
es

t 
C

on
tr

ol
 I

ns
tr

uc
ti

onu(φ, v) �
= Cr1

 Cr2

Crn

DistanceAngle

P
re

di
ct

io
n

Vehicle
State of Vehicle (x, y, θ) and Obstacles Information Control Instruction (φ, v)

Cr2

Crn

gr
ad

e

δ

µ µ

θ

...

µ

SoftTarget

r
Cr1

...

r1

r2

rn

Obstacle

µ

δ

µr(x, y, θ)
= r1

 r2

 rn

...

C
as

ca
de

 F
uz

zy
C

on
tr

ol
le

r

Elements of
Soft Target

Soft Target Setting
    Knowleadge

Soft Target
 Learning part

Fig. 12. Detail of the soft target based vehicle control system
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(xt+1, yt+1, θt+1) of robot is predicted for each instruction
candidate Cri

by the kinematics model (3).
Lastly, multipurpose fuzzy evaluation is carried out the for

angle deflection between the predicted state and the target,
distance deflection from the predicted pose to the target and
the minimal distance to the obstacles as denoted in Figure
13. It calculates the evaluation values of all candidates and
selects the one with the highest evaluation value as the
control target to calculate relevant control instruction.

The evaluation value of the operation instruction candidate
which results moving in the opposite direction is reduced a
half to avoid the local minima problem.

IV. SIMULATION RESULTS

In order to confirm the validity of the constructed control
system based on soft target, we carried out four kinds of
simulation: without any obstacle, with static obstacle, with
moving obstacle and with static and moving obstacles. The
simulation conditions are set as below.

• The parameters of the four-wheeled vehicle (assumed
as about the size of an actual car) are: width of the
car b = 1.8m, wheelbase L = 2.6m, minimal outside
turning radius Rmin = 4.0m, and the moving speed
v = 0.4m/s in both ahead and back.

• The map is set as Figure 7, and the static obstacle is
placed at from 4m ≤ x ≤ 6m, 0m ≤ y ≤ 9m.

• The moving obstacle car with the same size of the robot
car moves at a speed of 0.4m/s from left to right with
steering angle 0.
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Fig. 14. Robot trajectory without obstacle
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Fig. 15. Robot trajectory with static obstacle
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Fig. 16. Robot trajectory with dynamic obstacle
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Fig. 17. Robot trajectory with static and dynamic obstacles

• Final target is set as (−6m, 6m,π), and initial position
is set as (10m, 0m, 0.5π).



A. Without Any Obstacle

When there is no obstacle in the space, robot selects
(2m, 6m,π) with the membership value µ = 0.916 as the
best sub-target by learning and evaluation, and moves to final
target by U-turns as denoted in Figure 14. The run time until
arriving at final target is 46 seconds.

B. With Static Obstacle

Because of the impact of obstacle, the evaluation of sub-
target (2m, 6m,π) decreases, and robot selects the sub-
goal (10m, 6m, 0.5π) (µ = 0.556), (8m, 10m, 0.75π) (µ =
0.644) and (0m, 8m,−0.75π) (µ = 0.874) in turn by on-line
learning to avoid the obstacle until it achieves the task finally.
The run time until reaching the final state is 65 seconds. The
running trajectory of robot car is showed in Figure 15.

C. With Moving Obstacle

The initial position of moving obstacle car is set as
(−8m, 6m, 0). By predicting and evaluating the future state
of obstacle car and itself, robot selects (10m, 6m, 0.5π) (µ =
0.556) as sub-target firstly, then selects (2m, 8m,−0.75π)
(µ = 0.849) to obtain the collision-free and low cost path.
The running trajectory of it is denoted in Figure 16. The time
of reaching the final target is 62 seconds.

D. With Static and Moving Obstacles

The initial position of moving obstacle car is set as
(−8m, 12m, 0). Firstly, robot selects (10m, 6m, 0.5π) (µ =
0.556) and (8m, 10m, 0.75π) (µ = 0.644) as sub-target to
evade the static obstacle and approach to the final target. But
before it reaches (8m, 10m, 0.75π), it detects the moving
obstacle car and had to reverse to guarantee the safety by
selecting (10m, 2m, 0.5π) (µ = 0.668) and (8m, 0m, 0.25π)
(µ = 0.544) as via-point in turn. After it detected that
the near range is safe, it moves in the turns of sub-target
(10m, 6m, 0.5π) (µ = 0.556), (8m, 10m, 0.75π) (µ =
0.644), (0m, 8m,−0.75π) (µ = 0.874) till achieving the
task. The running trajectory of it is denoted in Figure 17.
The elapsed time until finally reaching is 117 seconds.

From these results, we confirmed that the robot controlled
by this method can avoid the obstacles flexibly, and select
the path with the lowest cost to achieve the task.

V. CONCLUSIONS

In this paper, a soft target based obstacle avoidance PFC
intelligent controller for car-like mobile robot in a dynamic
environment was proposed. The soft target defined as a set
of all possible via-points is learned based on the final target,
current state and environment information in real-time. For
each element of it, we use predictive fuzzy control method
to select the best one as the control target corresponding to
the current state and environment. Based on the proposed
soft target, it is possible to avoid obstacles (either static
or dynamic) in the space flexibly without restriction of
obstacle’s placement and shape. And the final target can be
set as we want because of the on-line learning of soft target.

The effectiveness of this method was demonstrated by
the simulation results. A collision-free and low cost motion
control of car-like mobile robot with the ability of dynamic
environment self-adaptation was achieved. A new method
simulating the decision process of human for moving body
in dynamic environment was expored.
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